High resolution Fourier domain optical coherence tomography in the 2 micron wavelength regime for painted objects Haida Liang^{1*}, S. C. Cheung¹, J. Daniel², M. Tokurakawa², W. A. Clarkson², M. Spring³ Tokurakawa², W. A. Clarkson², M. Spring³ ¹School of Science & Technology Nottingham Trent University, UK * Haida.Liang@ntu.ac.uk ²ORC, University of Southampton ³National Gallery, London ## Optical Coherence Tomography - Fast scanning Michelson interferometer invented for in vivo imaging of the eye - Axial resolution $\Delta z \propto \lambda_o^2/\Delta\lambda$ => need broadband laser for high resolution - Transverse resolution given by the objective lens and the laser beam width ## Types of OCT - Time Domain OCT (TD-OCT) scanning in depth by moving the reference mirror - Fourier Domain OCT (FD-OCT) - Spectral Domain OCT reference mirror fixed but the interference signal is registered as a function of wavelength through a spectrometer => FFT => image - Swept Source OCT reference mirror fixed and depth scanning is achieved by sweeping through the source spectrum Workshop of the Master of 1518, The Magdalen (NG719), before 1524-6 OCT image of an en-face slice below the paint layers showing the underdrawings OCT virtual cross-section Detail of infrared image (SIRIS high resolution InGaAS camera 900-1700 nm) ## OCT imaging of underdrawings Detail of the angel's eye SIRIS high resolution InGaAs camera (900-1700 nm) OCT 930nm en-face image of the underdrawing After Francesco Francia, Virgin and Child with an angel (NG 3927) In-house built UHR OCT at 800 nm using a NKT SuperK versa: - depth resolution 1.2 μm in varnish and paint - Sensitivity roll-off 2 dB over 1.2 mm - Speed of acquisition ~40 μs per depth profile - => 5 mm x 5 mm x 1.6 mm volume in 10s - Power incident on object~1 mW After Raphael, *The Madonna and Child* (NG 929) probably before 1600,Oil on wood, 87 x 61.3 cm ## Multiple Scattering masks layers Transparent at 1300nm, but multiple scattering masked the layer 1300 nm # Underdrawing is not always seen with short wavelength OCT Need to find optimum spectral band for OCT 930nm OCT image overlaid InGaAs NIR camera (900-1700 nm) #### Optimum Spectral Window for OCT imaging: 2.2 µm - Scattering coefficient decreases with increasing wavelength - Copper-based pigments, azurite, malachite and verdigris, have minimum transparency corresponding to absorption troughs between 0.7 and 1.0 μm; - Cobalt pigments have minimum transparency corresponding to the broad absorption trough at 1.3–1.6 μm Median spectral transparency normalized at 2.2 μm for pigments in use before the 19th century but excluding lake pigments. Blue - oil paint Red – egg tempera paint ## Broadband laser sources at 2µm wavelength - Broadband Tm-doped superfluorescent fiber source generated through the process of amplified spontaneous emission (ASE): - very stable - Bandwidth 40 nm - OCT axial resolution 35μm - Bandwidth >200nm - OCT axial resolution < 10 μm ## Long wavelength (2 microns) OCT First version: time domain OCT at 1960nm using ASE source (40nm bandwidth) => improved depth of penetration BUT rather slow, low axial resolution 1300nm OCT Paint layer on glass slide Bottom of glass slide 1960nm OCT ### Broad band supercontinuum source - Supercontinuum source with 10-200 kHz repetition rate - At 50 kHz pulse rate, 100 ns pulse width, average power ~0.5 W after spectral filtering - Pulse to pulse intensity variation ~ 1% (standard deviation) over the wavelength range ~1800-2200 nm - Pulse to pulse total intensity variation ~ 0.2% - Compact in-house built Q-switch thulium fibre pump Low cost commercially available solid core germanium doped fibre for continuum generation ## High resolution Fourier domain OCT at 1960 nm - FDOCT using FLIR InSb camera (640x512 pixels) as detector - Axial resolution ~ 6 microns (in paint and polymer) - Incident power 1-2 mW - Fast frame rate (2.7kHz) using 4x640 pixels - => 6mm x 6mm area in 2 mins #### OCT axial resolution - 1840-2300nm spread over 640 pixels - Spectral resolution ~1.4 nm (2 pixels) => depth range 1.2 mm - Axial resolution 9 μm in air or 6 μm in paint (with Hann window) ## Italian golden Ochre #### Cobalt blue in oil ## Indigo 930 nm OCT cross-section image 1960 nm OCT cross-section image Smalt (left) yellow ochre (right) oil paint on chalk ground ## 2 micron OCT – best underdrawing image Malachite, lead white, yellow lake paint layers on bone black drawing NIR InGaAs camera 900-1700nm NIR InSb camera 1500nm -2500nm 1960nm OCT #### Noise characteristics - Camera noise read noise and dark noise insignificant (possible integration time from 7 to 200 μs) - Shot noise dominates #### Source comparison – ASE versus SC at 2 microns Single pulse: ASE source more stable than SC source => 10 dB advantage #### Source comparison – preliminary qualitative comparison Comparing ORC SC source with 50 kHz repetition rate and newly available commercial SC source (SuperK EXTREME EXW-12) with ~80 MHz repetition rate Smalt (left) yellow ochre (right) oil paint on chalk ground 2 μm OCT cross-section image using commercial SC source $2~\mu m$ OCT cross-section image using in-house built SC source #### Conclusions - 1960nm OCT demonstrates the dramatic improvement in penetration depth over shorter wavelength systems - Can achieve similar improvements when applied to other materials with low water content - The supercontinuum source based Fourier domain OCT at 1960nm has been demonstrated with axial resolution ~6 microns in paint - FDOCT speed of capture depth profile (A-Scan) at 2.5kHz (or ~5 fps for cross-section images) ## Acknowledgements - Funding from the UK Engineering & Physical Science Research Council and Arts & Humanities Research Council, Science & Heritage Programme (AH/H032665/1) - Gooch & Housego plc. for 2um fibre couplers - National Gallery for paint samples - Funding from NTU for FLIR camera