

Integrated disruptive componentS for 2 µm fibre LAsers

ISLA is supported by the European Commission through the Seventh Framework Programme (FP7) Project number 287732 <u>www.isla-project.eu</u>

Project details

- ISLA is funded under the European Commission's Seventh Framework
 Programme
- Programme acronym FP7-ICT (<u>http://cordis.europa.eu/fp7/ict/home_en.html</u>)
- Programme type
 Seventh Framework Programme
- Sub-programme area Core and disruptive photonic technologies (b), (e)
- Project Reference 287732
- Project cost 4,538,870€
- Project funding 2,839,995€
- Start date 01-Oct-2011
- End date 30-Sep-2014 extended to 30-June 2015
- Duration
 45 months

Overview: why 2 µm?

- 2µm fibre laser technology has the potential to open whole new areas of ICT & industrial applications
- Power scaling
 - Increased core size
 - Higher non-linear thresholds
 - Tenfold increase in "raw power" compared with current technology
- Wavelength-specific advantages
 - Eye-safe
 - Rapidly growing interest in this spectral region
- Many potential applications
 - Industrial processing
 - Free-space communications
 - Medical procedures
 - Spectroscopy

- Develop a set of "building block" components
 - Define an integrated modular common platform for 2 µm Ho-doped fibre lasers
 - Compatible and self-consistent fibre, components and laser diodes
- Laser types under development
 - CW
 - Pulsed
 - Short pulse lasers
- Industrial demonstration applications
 - Transparent plastic cutting
 - PV cell scribing
- Industrial user group
 - Identify new applications
 - Aid exploitation routes
 - Results promoted within recognised standards bodies.

Consortium

Seven partners from four nations

\land Gooch & Housego

COLÁISTE NA TRÍONÓIDE, BAILE ÁTHA CLIATH	THE UNIVERSITY OF DUBLIN
--	--------------------------------

- Gooch and Housego (Torquay) [Coordinator]
 - UK component and sub-system manufacturer
 - Fused fibre couplers, photonic packaging, isolators, modulators
- ORC Southampton
 - UK university group
 - Active and passive fibre development
- Trinity College Dublin
 - Irish university group
 - Nano-carbon-based materials development
- II-VI Laser Enterprise (Oclaro Switzerland AG)
 - Swiss laser diode manufacturer
 - 79x pump diode development
- ROFIN
 - German industrial laser system manufacturer
 - CW and pulsed laser development
- JDSU (Time-Bandwidth Products)
 - Swiss industrial laser system manufacturer
 - Oscillator and modelocker development
- Vivid Components
 - German SME project managers
 - Project administration & dissemination

5

- Fibres
 - Thulium fibres with 70% slope efficiency at >100 W output
 - Strategy for further increasing efficiency towards quantum limit
 - Holmium fibres with 75% slope efficiency
- Portfolio of active and passive components
 - Amplitude modulators and tunable filters
 - Fibre-coupled isolators, pump combiners and low loss taps
 - Wavelength-flattened couplers
 - Fibre-coupled silicon pulse pickers
 - Graphene-based mode lockers
- Diodes
 - >38 W in 105 μ m fibre with 0.15 NA demonstrated
 - Wavelength stabilised devices with 60% power conversion efficiency

Workshop Agenda

Time	Slot	Торіс	Led by
08:30	00:30	Arrival and coffee	
09:00	00:05	Welcome and introduction	Gary Stevens; Gooch and Housego (Torquay)
09:05	00:15	Fibres for 2 μ m	Prof. Andy Clarkson; ORC Southampton
09:20	00:15	Passive components for 2 µm fibre laser	Gary Stevens; Gooch and Housego (Torquay)
09:35	00:10	Active components for 2 µm fibre lasers	Jon Ward; Gooch and Housego (UK)
09:45	00:10	Modelockers based on graphene	Prof. Werner Blau; Trinity College Dublin
09:55	00:15	Pump lasers at 79x nm	Dr. Susanne Pawlik; II-VI Laser Enterprise
10:10	00:10	2 μm ps-lasers	Dr. Peter Hofmann; JDSU Ultrafast
10:20	00:10	CW and pulsed lasers at 2 μm for material	
		processing applications	Dr. Sina Riecke; ROFIN-SINAR Laser GmbH
10:30	00:30	Coffee and discussion	
11:00	00:20	2 µm laser development and applications	Dr. Samir Lamrini; LISA Laser
11:20	00:20	Medical applications of 2 µm lasers	Dr. Ronald Sroka; Hospital of University Munich
11:40	00:20	OCT for cultural heritage using 2 μ m	
		broadband lasers	Dr. Haida Liang; Nottingham Trent University
12:00	00:20	Plastics processing with 2 µm lasers	Stephan Fazeny; Trotec Laser
12:20	00:20	2 µm lasers for MIR frequency conversion	Dr. Eric Lallier; Thales Research and Technology
12:40	01:00	Lunch	
13:40	00:20		Prof. David Richardson; ORC Southampton
		Telecoms applications for 2 μ m lasers	(MODEGAP project)
14:00	00:20	2 μ m lasers as pump sources to the mid-IR	Dr. Lasse Leick; NKT Photonics
14:20	00:20	Free space communications using 2 μm	Florian Moll; Institute of Communications and
		lasers	Navigation
14:40	00:20	Discussion: roadmap for 2 μ m fibre lasers	Gary Stevens; Gooch and Housego (Torquay)
15:00		Meeting close	

