ISLA – Two micrometer Sources and Toolset for Enhanced Material Processing

Forum Optical Metrology and Imaging A2.250

Munich, June 25th, 13:40

Speaker, Dr Andrew Robertson, Gooch & Housego

ISLA – Integrated disruptive componentS for 2 µm fibre Lasers (ISLA)

In cooperation and with the support of the European Commission, Photonics21 and Messe München AG

ISLA Project facts

Programme	type
-----------	------

Sub-programme (e)

Project cost

Project funding

Start date

End date

Duration

Seventh Framework Programme

Core and disruptive photonic technologies

4,538,870€

2,839,995€

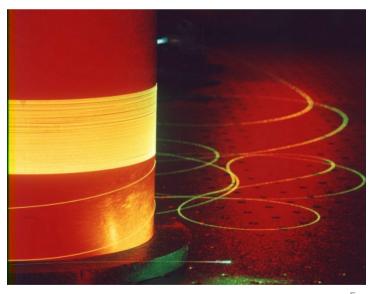
01-Oct-2011

30-Sep-2014 - extended to 30-June 2015

45 months

ISLA Partners

Seven partners from four nations


- Gooch and Housego [Coordinator]
 - UK component and sub-system manufacturer
 - Fused fibre couplers, photonic packaging, isolators, modulators
- ORC Southampton
 - UK university group
 - Active and passive fibre development
- Trinity College Dublin
 - Irish university group
 - Nano-carbon-based materials development
- II-VI Laser Enterprise (was Oclaro Switzerland AG)
 - Swiss laser diode manufacturer
 - 79x pump diode development
- ROFIN
 - German fibre laser system integrator
 - CW and pulsed laser development
- JDSU (was Time-Bandwidth Products)
 - Swiss fibre laser system integrator
 - Oscillator and modelocker development
- Vivid Components
 - German SME project managers
 - Project administration & dissemination

1

Why 2 µm

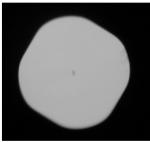
- 2µm fibre laser technology has the potential to open whole new areas of ICT & industrial applications
- Power scaling
 - Increased core size
 - Higher non-linear thresholds
 - Tenfold increase in "raw power" compared with current technology
- Wavelength-specific advantages
 - Eye-safe
 - Absorption in glass and plastics
- Many potential applications
 - Industrial processing
 - Free-space communications
 - Medical procedures

ISLA Objectives

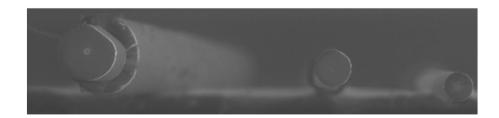
- Develop a set of "building block" components
 - Define an integrated modular common platform for 2 µm Ho-doped fibre lasers
 - Compatible and self-consistent fibre, components and laser diodes
- Develop 2µm high power fibre laser architectures
- Industrial demonstration applications
 - Transparent plastic cutting
 - PV cell scribing
- Industrial user group (ISLA Advisory Group)
 - Identify new applications
 - Aid exploitation routes
 - Results promoted within recognised standards bodies.

Regional Impact

Maintaining Europe at forefront of Laser Development & Manufacturing

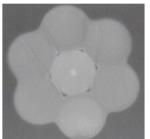

- Developing critical IP and maintaining manufacturing capability
 - Component supply chain
 - Fibre (thulium & holmium)
 - Passive components (couplers, combiners, isolators, mode-lockers)
 - Active components (pump diodes, AOMs, AOTFs)
 - Laser Design
 - CW, tunable, pulsed, mode-locked
- Effective, rapid communication and dissemination
 - ISLA Advisory Group

ISLA Fibres

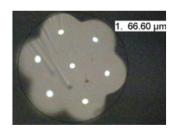


- Improvements in Thulium fibre performance
 - 70% slope efficiency
 - Good thermal handling and output beam quality
- Matched passive fibres developed
 - Ensures optimised component performance

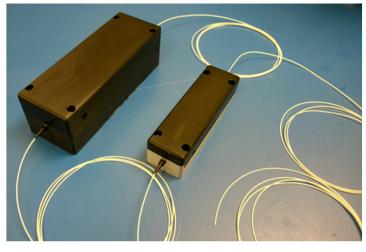
- Holmium fibres manufactured and characterised
 - OH contamination reduced to 0.3ppm
 - 75% slope efficiency

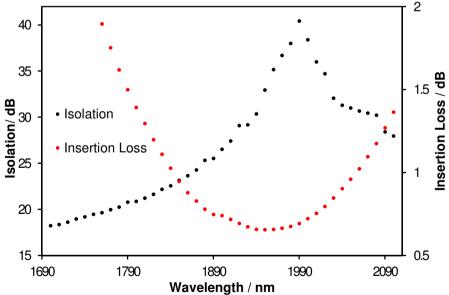


ISLA Passive Components I

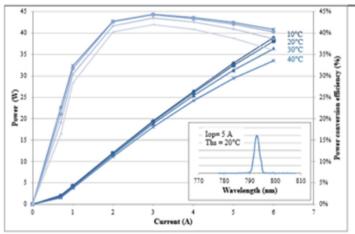

- Portfolio of 2µm SM components developed
 - High power tap couplers & power splitters
 - Polarization maintaining components

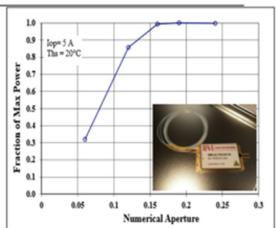
- Portfolio of MM combiners developed
 - 793nm MM power combiners (7x1, 6+1*1, 2*1+1)
 - Over 500W pump power, over 90% signal Tr

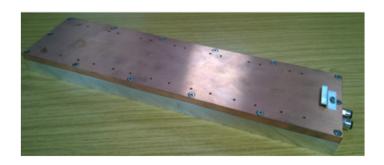



- Additional components
 - 7x Thulium pumps into Holmium MM
 - Tapers for graphene mode-lockers

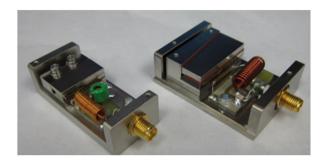
ISLA Passive Components II




- Isolators
 - >35dB Isolation
 - <1dB loss</pre>
 - >25dB PER
- Different materials investigated
 - Miniature devices developed for low power

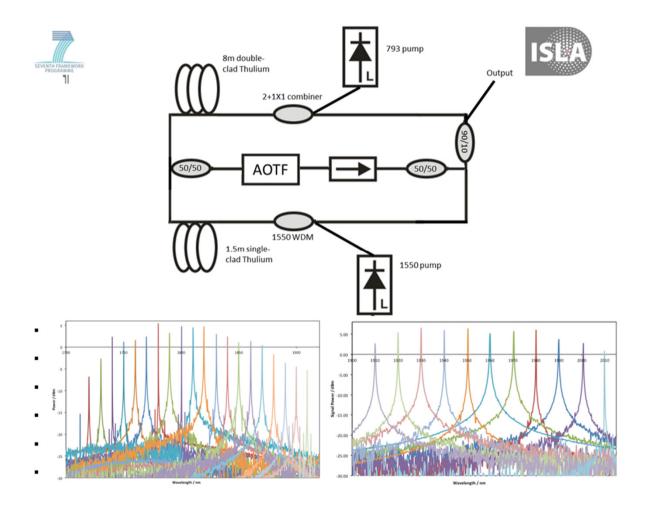


ISLA Active Components I

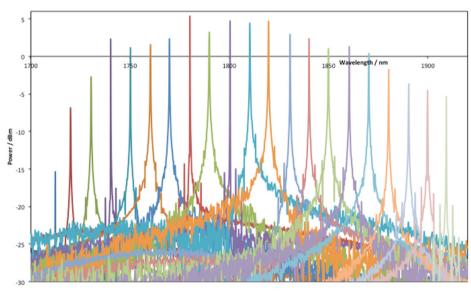


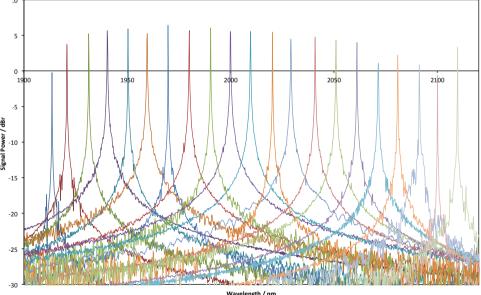
- 79x nm Pump diodes
 - Over 30W from 105um, 0.15NA fibre
 - Over 4W wavelength stabilized single emmiters
- Pump block
 - 793nm, 220W output, 200um clad fibre

ISLA Active Components II


IL2 Modulator diffraction vs. Drive power (red= vertical polarization, Green = Horizontal polarization)

- Different AO materials
 - Tellurium Dioxide
 - Chalcogenide
- Portfolio of AO devices at 2µm
 - AO modulator (AOM)
 - AO tunable filter (AOTF)
 - Pulse picker
 - Zero frequency shift modulator


ISLA Laser Configurations - tunable



Tuning range

Core-pumped tuning range 1710-1912 nm

Clad-pumped tuning range 1912-2112 nm

ISLA Additional Outputs

- Publications
 - 6 Journal papers
 - 12 Conference papers
- Active Dissemination
 - ISLA video
 - ISLA participation at cross cutting events
 - E.g. Free space communications
- ISLA Workshop
 - Over 50 participants

ISLA workshop FRI 26-Jun-2015 (Raeter Park Hotel, Munich)

Project video
A short video providing a summary of the project "in a nutshell."

The ISLA project

by BRUCE NAPIER on 23RD APRIL 2015

ISLA Lowlights

- Mode-locking with graphene coated tapers not achieved
 - But much was learned about material properties and coating of fibre tapers
- Difficulties in component development caused delays
 - Resulted in demonstration lasers not being finished during life of project
 - **But** all components now in place & work on demonstrator lasers will be completed

ISLA Highlights

- Excellent advances in fibre manufacture (Thulium & Holmium)
 - High slope efficiency
- Portfolio of passive components developed and demonstrated
 - Couplers, MM combiners, Isolators
- Diode development ultimately successful with 6000hrs lifetime demonstrated
- Portfolio of acousto-optic devices developed and demonstrated
- More than a dozen new products developed
- It has been agreed the demonstration lasers will be completed

Beyond ISLA

Topics discussed at Friday's ISLA workshop

2 um laser development and applications

Dr. Samir Lamrini; LISA Laser

Medical applications of 2 um lasers

Dr. Ronald Sroka; Hospital of University Munich

Optical Coherence Tomography for cultural heritage using 2 um broadband lasers

Dr. Haida Liang; Nottingham Trent University

Plastics processing with 2 um lasers

Stephan Fazeny; Trotec Laser

2 um lasers for MIR frequency conversion

Dr. Eric Lallier; Thales Research and Technology

Telecoms applications for 2 um lasers

Prof. David Richardson; ORC Southampton (MODEGAP project)

2 um lasers as pump sources to the mid-IR

Dr. Lasse Leick; NKT Photonics

